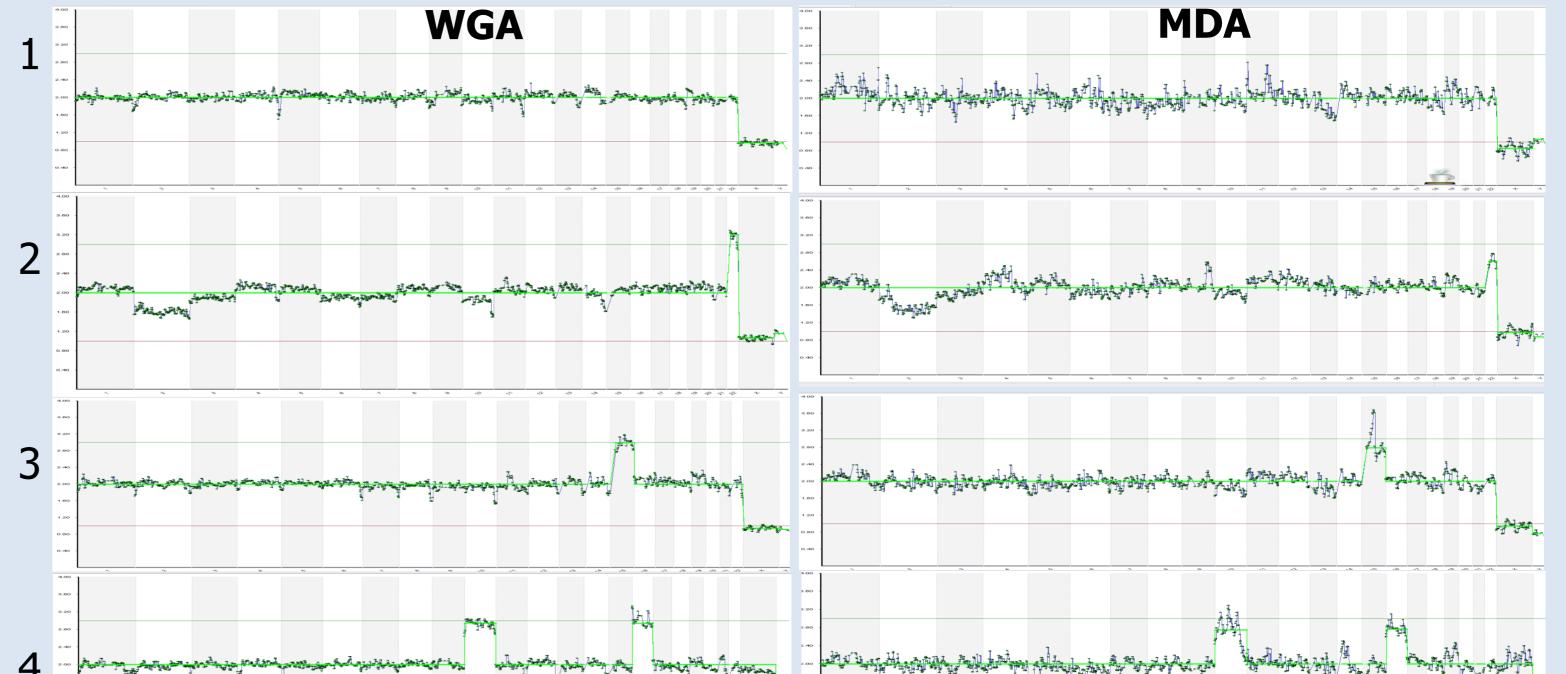
Successfully Clinical Outcomes using Combination of Preimplantation Genetic Testing for Aneuploidy (PGT-A) and Preimplantation Genetic Testing for SUPERIOR A.R.T. **Monogenic Disorders (PGT-M)**

Piyarat Thaijaroen, Kasorn Tiewsiri, Tanarut K. Jantapanon Genetic Laboratory, Superior A.R.T., Bangkok, Thailand

Tel: +66 2 035 1440; Fax: +66 2 255 8455; e-mail: piyarat@thaisuperiorart.com

Preimplantation genetic testing for aneuploidy (PGT-A) is significantly for early embryos. Using recent technology of next generation sequencing (NGS), significantly increased pregnancy rates and decreased miscarriage rates. In 2016, Superior A.R.T. began combining NGS and preimplantation genetic testing for monogenic disorders (PGT-M) by PCR for the simultaneous detection from a single biopsy of embryos. However using standard whole genome amplification (WGA) had high levels of allele drop out (ADO) in STR markers. Replacing WGA with multiple displacement amplification (MDA), known to have longer product size and more uniform coverage across the genome, dropped ADO rates to comparable to standard PGD-PCR. It has been shown to significantly increased pregnancy to 80% with 62% of

implantation rate.

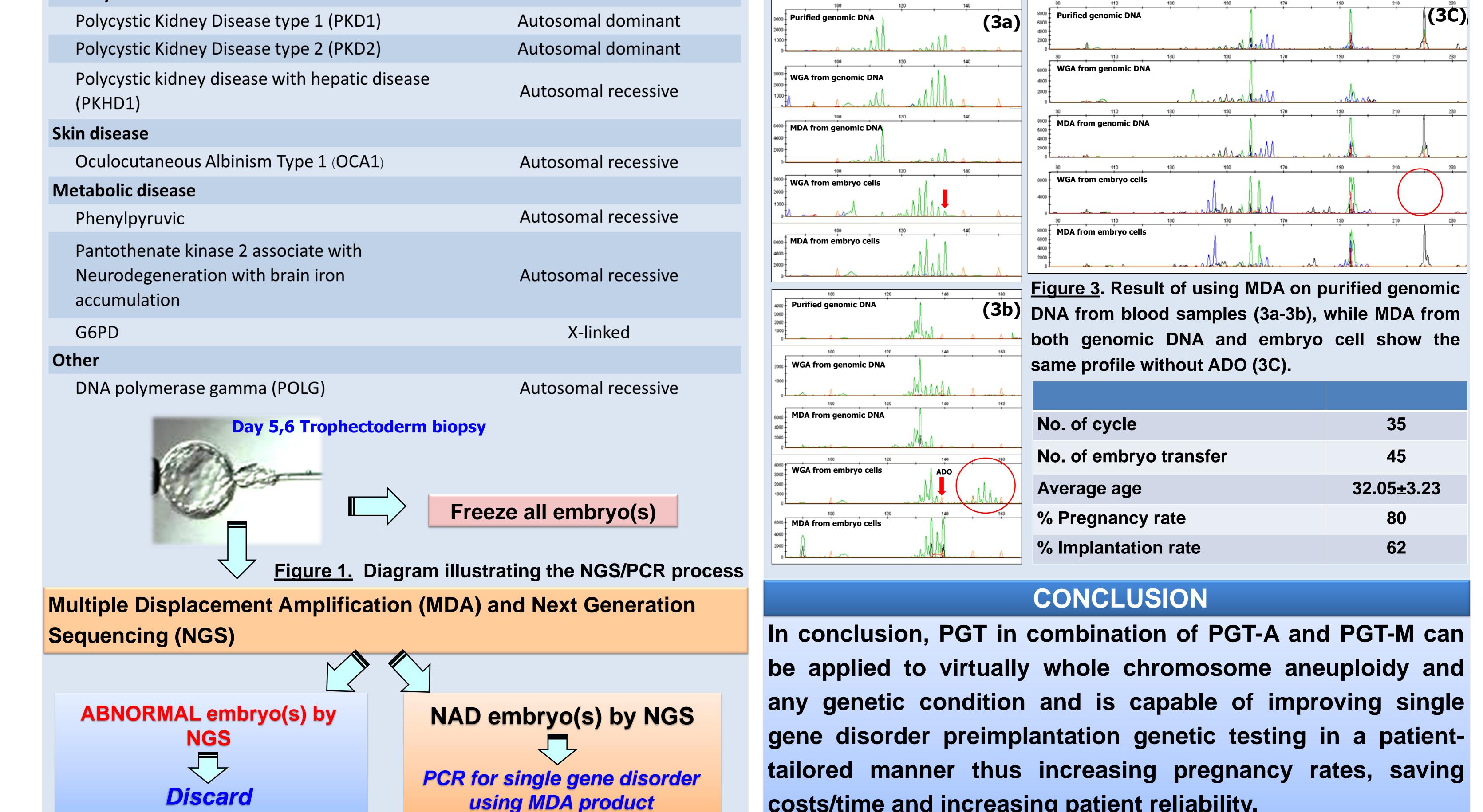

METHOD

In this study we used MDA and NGS/PCR for 26 different single gene disorders in 35 cycles. Couple having NGS/PCR cycle were workedup before they underwent routine IVF procedures. The embryos were cultured to blastocyst stage on Day 5 or Day 6 when 3-5 trophectoderm cells were biopsied. NGS/PCR process was performed and the result were came out within 10 days after biopsy.

Genetic Disorder	Inheritance pattern						
Blood disorder							
Beta-Thalassemia	Autosomal recessive						
Beta-Thalassemia and HLA matching	Autosomal recessive						
Alpha-Thalassemia	Autosomal recessive						
Alpha-Thalassemia and HLA matching	Autosomal recessive						
Neurodegenerative disorder							
Tuberous Sclerosis (TSC2)	Autosomal dominant						
Spinal Muscular Atrophy 1 (SMA1)	Autosomal recessive						
Charcot-Marie-Tooth disease (CMTX)	X-linked dominant						

RESULT

DNA from blood samples showed low profile bias, comparable with much higher bias from WGA product. Using MDA, ADO rates on both genomic DNA from blood or from embryo cells was decreased to the same range as with standard PCR techniques. No specific additional amplification products were observed.



Cancer predisposition

Neurofibromatosis type 1 (NF1)	Autosomal dominant					
Hereditary multiple osteochondromas (HMO)	Autosomal dominant					
Multisystem disorder						
Polycystic Kidney Disease type 1 (PKD1)	Autosomal dominant					
Polycystic Kidney Disease type 2 (PKD2)	Autosomal dominant					
Polycystic kidney disease with hepatic disease (PKHD1)	Autosomal recessive					
Skin disease						
Oculocutaneous Albinism Type 1 (OCA1)	Autosomal recessive					
Metabolic disease						
Phenylpyruvic	Autosomal recessive					
Pantothenate kinase 2 associate with Neurodegeneration with brain iron accumulation	Autosomal recessive					
G6PD	X-linked					
Other						
DNA polymerase gamma (POLG)	Autosomal recessive					

Т	1.00		1.00	en e	
	1.20		1.20		
	o.eo -	(2-)	3.00	(2h)	
	5.40 ·	(Za)	2.40	(2D)	
		<u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>	-4		* * * * * * * * *

Figure 2. NGS result of 24-chromosome aneuploidy screening using WGA (2a; 1-4) compare to MDA (2b; 1-4).

	NO. OT CYCIE	35
140 160 ADO	No. of embryo transfer	45
A (AMARA)	Average age	32.05±3.23
140 160	% Pregnancy rate	80
ΔΔ	% Implantation rate	62
	Average age % Pregnancy rate	32.05±3.23 80

costs/time and increasing patient reliability.